Texas Investment Network


Recent Blog


Pitching Help Desk


Testimonials

"I made several great connections through your network. In fact, I was able to over fund my project. I also listed with another network that cost 3X as much and the leads were nowhere near as solid as the investors I met through this network. I will definitely only be using this network in the future. "
Jason A.

 BLOG >> Recent

Lean Startup Lens [Lens Model
Posted on May 6, 2016 @ 08:35:00 PM by Paul Meagher

I never really gave much thought to the practical importance of the philosophical distinction between correspondence and coherence theories of truth until I read Kenneth Hammond's book Human Judgment and Social Policy: Irreducible Uncertainty, Inevitable Error, Unavoidable Injustice (1996). It turns out that in research on judgment and decision making the distinction is very important because it defines what researchers consider "good" or "correct" judgment and decision making. For someone subscribing to a coherence theory of truth, the truth of a statement is determined by how well it fits with other things we take to be true, such as probability theory. Nobel Laureate Daniel Kahneman in his best-selling book Thinking, Fast and Slow (2011) discusses a variety of experiments that purport to demonstrate how poorly humans often reason because their reasoning does not accord with the rules of probability theory. The experiments demonstrate many different types of biases (anchoring, framing, availability, recency, etc...) that human reasoning is subject to based on their disagreement with the rules of probability theory.

Professor Kenneth Hammond, and before him, his mentor Egon Brunswik, were not big fans of the coherence theory of truth. They preferred a correspondence theory where the truth of a statement is determined by whether it corresponds to the facts. They believed that our access to the facts was often mediated by multiple fallible indicators. We may not be able to verbalize some of the indicators we use in our judgment, or how we are combining them, but our intuitive understanding can lead to accurate judgments about the world even if we don't have a fully coherent account of why we believe what we do. Often the judgment rule turns out to be a simple linear model that combines information from multiple fallible indicators. Experiments in this tradition involve people making judgments about states of the world based upon indicator information and examining the accuracy of their judgments, the ecological validity of the indicators, and whether judges utilize the indicator in a way that corresponds to its ecological validity.

So how you conduct and interpret experiments in judgment and decision making are affected by whether you believe correspondence theories of truth are superior to coherence theories of truth and vice versa. They are metatheories that determine the specific theories we come up with and how we study them.

The distinction is relevant to entrepreneurship. For example, a business plan is arguably a document designed to present a coherent account of why the business will succeed. If you've ever questioned the value of a business plan it could be because it is a document that is judged based upon coherence criteria but the actual success of the startup will depend upon whether the startup's value hypothesis and growth engine hypothesis corresponds with reality. Eric Ries, in his best selling and influential book, The Lean Startup (2011) discussed many techniques for validating these two hypothesis. Although he does not discuss the correspondence theory of truth as his metatheory, it is pretty obvious he subscribes to it.

In practice, the correspondence theory of truth often involves defining and measuring indicators and making decisions based on these indicators. In the lean startup, Eric Ries advocates looking for indicators to prove that your value hypothesis is true. If the measured indicators don't prove out your value hypothesis you many need to start pivoting until you find a value hypothesis that appears correct according to the numbers. If your value hypothesis looks good, then you will need to validate your growth hypothesis by defining and measuring key performance indicators for growth. The lean startup approach is very experiment and measurement driven because it is a search for correspondence between the value and growth hypothesis and reality.

We can represent the lean startup value and growth hypothesis with a lens model by making a slight modification to Kenneth Hammond's version of the Lens Model:

This diagram should actually be two lens models, one for the value hypothesis and one for the growth hypothesis. I'm being lazy. The lens model for the value hypothesis asks what indicators can we use to measure whether our product or service delivers the value that we claim it does. The lens model for the growth hypothesis asks what indicators we can use to measure whether our growth engine is working. You should read the book if you want examples of how indicators of value and growth were defined, measured and used in the various startups discussed.

One reason why the lean startup theory is useful is because success in starting a business is defined more in terms of correspondence with reality than coherence with other beliefs that we might hold to be true. There are lots of situations where the coherence theory of truth might be useful, such as narratives about the meaning of life and social interactions where truth is a matter a perception and plausible story telling, but that does not get you very far if you are a startup or running a business. Correspondence is king.

If correspondence is king, you might find the lean startup lens model above offers a simple visualization that can be used to remind you of how accurate judgments regarding the value and growth hypothesis for startups are achieved.

Permalink 

 Archive 
 

Archive


 November 2023 [1]
 June 2023 [1]
 May 2023 [1]
 April 2023 [1]
 March 2023 [6]
 February 2023 [1]
 November 2022 [2]
 October 2022 [2]
 August 2022 [2]
 May 2022 [2]
 April 2022 [4]
 March 2022 [1]
 February 2022 [1]
 January 2022 [2]
 December 2021 [1]
 November 2021 [2]
 October 2021 [1]
 July 2021 [1]
 June 2021 [1]
 May 2021 [3]
 April 2021 [3]
 March 2021 [4]
 February 2021 [1]
 January 2021 [1]
 December 2020 [2]
 November 2020 [1]
 August 2020 [1]
 June 2020 [4]
 May 2020 [1]
 April 2020 [2]
 March 2020 [2]
 February 2020 [1]
 January 2020 [2]
 December 2019 [1]
 November 2019 [2]
 October 2019 [2]
 September 2019 [1]
 July 2019 [1]
 June 2019 [2]
 May 2019 [3]
 April 2019 [5]
 March 2019 [4]
 February 2019 [3]
 January 2019 [3]
 December 2018 [4]
 November 2018 [2]
 September 2018 [2]
 August 2018 [1]
 July 2018 [1]
 June 2018 [1]
 May 2018 [5]
 April 2018 [4]
 March 2018 [2]
 February 2018 [4]
 January 2018 [4]
 December 2017 [2]
 November 2017 [6]
 October 2017 [6]
 September 2017 [6]
 August 2017 [2]
 July 2017 [2]
 June 2017 [5]
 May 2017 [7]
 April 2017 [6]
 March 2017 [8]
 February 2017 [7]
 January 2017 [9]
 December 2016 [7]
 November 2016 [7]
 October 2016 [5]
 September 2016 [5]
 August 2016 [4]
 July 2016 [6]
 June 2016 [5]
 May 2016 [10]
 April 2016 [12]
 March 2016 [10]
 February 2016 [11]
 January 2016 [12]
 December 2015 [6]
 November 2015 [8]
 October 2015 [12]
 September 2015 [10]
 August 2015 [14]
 July 2015 [9]
 June 2015 [9]
 May 2015 [10]
 April 2015 [9]
 March 2015 [8]
 February 2015 [8]
 January 2015 [5]
 December 2014 [11]
 November 2014 [10]
 October 2014 [10]
 September 2014 [8]
 August 2014 [7]
 July 2014 [5]
 June 2014 [7]
 May 2014 [6]
 April 2014 [3]
 March 2014 [8]
 February 2014 [6]
 January 2014 [5]
 December 2013 [5]
 November 2013 [3]
 October 2013 [4]
 September 2013 [11]
 August 2013 [4]
 July 2013 [8]
 June 2013 [10]
 May 2013 [14]
 April 2013 [12]
 March 2013 [11]
 February 2013 [19]
 January 2013 [20]
 December 2012 [5]
 November 2012 [1]
 October 2012 [3]
 September 2012 [1]
 August 2012 [1]
 July 2012 [1]
 June 2012 [2]


Categories


 Agriculture [77]
 Bayesian Inference [14]
 Books [18]
 Business Models [24]
 Causal Inference [2]
 Creativity [7]
 Decision Making [17]
 Decision Trees [8]
 Definitions [1]
 Design [38]
 Eco-Green [4]
 Economics [14]
 Education [10]
 Energy [0]
 Entrepreneurship [74]
 Events [7]
 Farming [21]
 Finance [30]
 Future [15]
 Growth [19]
 Investing [25]
 Lean Startup [10]
 Leisure [5]
 Lens Model [9]
 Making [1]
 Management [12]
 Motivation [3]
 Nature [22]
 Patents & Trademarks [1]
 Permaculture [36]
 Psychology [2]
 Real Estate [5]
 Robots [1]
 Selling [12]
 Site News [17]
 Startups [12]
 Statistics [3]
 Systems Thinking [3]
 Trends [11]
 Useful Links [3]
 Valuation [1]
 Venture Capital [5]
 Video [2]
 Writing [2]